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INTRODUCTION 
It has been known for some time that axial dispersion in an 
oscillatory flow in a confined passageway is much higher 
than that attainable by pure molecular diffusion. Variations 
of velocities in the cross-sectional area, coupled to the radi- 
ally-distributed concentration field, leads to enhancement of 
axial dispersion. As a measure of the enhancement, the con- 
cept of effective diffusivity has been proposed, which rep- 
resents the combined contributions of convective activities 
and of molecular diffusion. Taylor [l] pioneered on the sub- 
ject of the diffusive spreading of a substance, and a con- 
siderable amount of work [2-51 has been compiled to address 
this issue of augmentation of axial dispersion in oscillating 
laminar flows. 

For flows in a circular pipe or in a two-dimensional chan- 
nel, Watson [2] and Kurzweg [6] derived the dimensionless 
effective diffusivity R that was governed by three non-dimen- 
sional quantities. Those quantities were the Schmidt number, 
the Womersley number a,, corresponding to a dimensionless 
frequency, and a dimensionless amplitude s, formed by a 
representative length scale and a tidal displacement. Watson 
[2] also showed that R,( = R/E,), the ratio of dimensionless 
effective diffusivity to dimensionless amplitude, was a mon- 
otonically increasing function of ah. On the contrary, this 
continuous increase of R,, within the range of large a,,, has 
conflicted with such a physical understanding that the 
enhancement diminishes to zero for both very high and very 
low values of an appropriately defined dimensionless fre- 
quency with other conditions being fixed [3]. Thus, to over- 
come this point, Joshi [3] demonstrated that R/Pe2, the ratio 
of dimensionless effective diffusivity to another dimen- 
sionless amplitude, approached zero for the large a,,, where 
the Peclet number Pe was consisted of a velocity amplitude, 
the molecular diffusivity and a radius. However, this 
mapping, R/Pe2 vs a,,, also could not meet the physical under- 
standing for the very small ai,, quasi-steady situation. These 
discrepancies of previous works are due to the improper 
parameters and the physical analysis using only two kinds of 
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time scales, a radial molecular diffusion time and a cycle 
period by Joshi [3] and Kurzweg [7, 81. 

This study aims to find proper parameters in both low 
and high frequencies, based on a characteristic time scale 
analysis. Furthermore, using these new parameters, it will be 
shown that not only the radial diffusion time but also the 
axial diffusion time should be introduced for the analysis 
and physical understanding of the phenomena. We shall 
demonstrate that the case of a uniform rectangular duct 
shares the same physics as that of a circular tube.. 

GOVERNING EQUATIONS AND THE DEFINITION 
OF THE EFFECTIVE DIFFUSIVITY 

It will be assumed that a diffusing substance is a passive 
contaminant, of which the concentration is so small that the 
physical properties of the fluid and the diffusivity of the 
contaminant may be taken as constant. The flow is assumed 
to be entirely in the axial direction with a uniform rectangular 
duct of width 2a and height 2b. The axial momentum equa- 
tion for a fully developed laminar flow bounded by a pipe 
wall B, and an axis of symmetry B2, can be written as : 

aw -= ai -ig+v($+$) in Q (1) 

with the imposed pressure gradient ap/ & = - Pcos(wt). 
The boundary conditions are 

w =0 on B, and &/an = 0 on B2 

where a/ an denotes the rate of change in the outward normal 
direction. The diffusion equation governing the con- 
centration is 

ae a6 
~+wx=K($+$) in R (2) 

with 
aelan = 0 on B, and Bz 

since the pipe is assumed to be. impermeable. Here, the axial 
gradient of concentration is assumed as constant. 
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A cross-sectional area of the tube Z axial coordinate. 
a half width of the tube 
ah hydraulic radius Greek symbols 
6 half height of the tube % Womersley number 
RI tube wall >’ axial concentration gradient 
RZ axis of symmetry non-dimensional cross-stream coordmate 

fu 
imaginary unit ;I concentration 
effective diffusivity K molecular diffusivity 

n outward normal direction li kinematic viscosity 
P amplitude of pressure gradient ;L non-dimensional cross-stream coordinate 
P pressure P density 
4 axial volume flux rJ Schmidt number 
R dimensionless effective diffusivity tidal displacement 
s aspect ratio :: domain 
t time <I, angular frequency of oscillation. 
V tidal volume 
M axial velocity Superscript 
.Y cross-stream coordinate time average 
? cross-stream coordinate complex conjugate. 

Solutions of equations (1) and (2) appear as below : 

vv = Rr[,f(x, y)e”“‘] (3) 

0 = - YZ + Re[yg(x, y)e”“‘]. (4) 

The flux q of the contaminant gas at z = constant is 

a6 
q = W6-Kii3 (5) 

If the time averaged flux consisted of the convection and 
diffusion in the equation (5) can be expressed by the concept 
of effective diffusion, then the effective diffusivity Kis defined 
as : 

- ae afi 
we--~%= -Kz m R. 

Integrating the equation (6) over R using equations (3) and 
(4) gives the dimensionless effective diffusivity R, 

R+ =&Re[jj(fg)dxdi]. (7) 

R 

Dimensionless variables are introduced as : 

( = x/a q = y/b (r = Y/K s = a/b. 

cth = ah J(w/v) cl+, = Zab/(a+ b) 

From Watson [2] and Kurzweg [6] the tidal displacement x 
becomes 

Non-dimensionalized governing equations are 

(8) 

with the boundary conditions 

F= 1 on B, and dF/dn = 0 on Bz 

dG/& = 0 on B, and B2 
where 

c, = sz c2 =(1+#/4. 

(10) 

RESULTS AND DISCUSSION 

Solution 
After equations (9) and (10) are split into the real and imagin- 
ary parts, the Galerkin method is applied to obtain solutions 
as follows : 

F-l= f f amn co&t;) cos(w) 
VI=, n=, 

+i f f b,.cos(n,~)cos(n,~) (11) 
m=,n=L 

+i i i dm,cos(II,~)cos(lT,tj). (12) 
m=On=0 

The coefficients am”, b,,, c,,, d,, and arguments in cosine 
functions are in the Appendix. From the equation (7) the 
dimensionless effective diffusivity R, is derived, 

R 
R, z- 

1 s2 

V’/a,” 
ZZ ----,JbG(; 

8 (1 +sY jj 
Re]EII d5 drl 

n 

where H = i(F- l)(G- 1) and V is tidal volume whose defi- 
nition is given in the Appendix. 
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Comparison of the dimensionless effective dlffusivity with that 
in a circular pipe 

Figure 1 shows that trends of the dimensionless effective 
diffusivity R, are in good agreement with Watson’s solution 
[2] for a circular pipe. As pointed out by Watson [2], R, 
steeply increases in slow oscillation (low a,,) more than in 
fast oscillation. It is necessary to describe the dimensionless 
effective diffusivity R in view of new parameters for explain- 
ing physically the behaviour of R at the high values of ah. 

Analysis using new parameters-new dimensionless frequency 
and amplitude 

In order to introduce new parameters, several charac- 
teristic time scales are defined as : 

t, = aE/v, q = al/h-: transverse diffusion time scales, 
r, = w-‘: convective time scale, 
7, = x=/K : longitudinal diffusion time scale. 

Dimensionless variables which have been defined hitherto 
can be expressed by the time scale ratios as follows : 

ah = d(T,/T,) 0 = 5,/T, (x/d = TdT, = E2 

CRY; = q/5, = E) WX=jK = T,/T, = EZE, = Ed. 

Using the above parameters, a new expression for the dimen- 
sionless effective diffusivity is, 

(14) 

From equation (14), 

R = E2E,& = ERR>. (15) 

Here the new parameters E) and Ed can be thought as a 
dimensionless frequency and a dimensionless amplitude. 

As clearly seen from the equation (15), R is just pro- 
portional to E.,. The effect of Ed on R is not so simple that a 
slow oscillation should be distinguished from a fast oscil- 
lation. From Fig. 2, an increase of Ed acts to enhance the 
axial dispersion in a slow oscillation, but a further increase 
of Ed tends to reduce that in a fast oscillation when~a, and IJ 
are kept constant. These results in Fig. 2, clearly demonstrate 
that enhancement of axial dispersion vanishes for both a 
quasi-steady situation and very high values of dimensionless 
frequency Ed if Ed is kept constant. Another effectiveness of 
new parameters E, and sq is also shown in Fig. 2, where two 
parameters a,, and c are unified into one parameter E, in the 
range of slow oscillation. Consequently, it is important to 
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Fig. 1. The behavior of dimensionless effective diffusivity 

R,(s = 1 .O). 
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6 
Fig. 2. The effect of sj on the dimensionless effective diffu- 

sivity (s = 1 .O). 

note that the key parameter Ed can help to bridge over dis- 
crepancies between mathematical descriptions and physical 
understanding. 

In view of the characteristic time scale, the parameter E) 

as the dimensionless frequency includes the concentration 
related scale rather than the momentum related one from the 
fact, a,, = a,,,/(w/v) and,/c, = a,,,/(o/rc). Therefore, E) may 
be interpreted as whether or not the radial mixing, due to 
molecular diffusion occurs sufficiently during one half period 
of the oscillation, even though s is omitted in the definition 
of the convective time scale TV. For a further understanding 
of the physical meaning of the new dimensionless amplitude 
Ed, the longitudinal length scales are introduced as : 

6, = 7. 
6, = J(K/o) : 

convective length scale, 
longitudinal diffusion length scale. 

Here, the length scale 6, has a similar nature with the pen- 
etration depth of viscous wave in Stokes’s 2nd problem (Sch- 
litching [9]). Accordingly, 6, can be interpreted as the axial 
penetration depth of concentration, which signifies the axial 
distance of diffusion during a half period. With these two 
longitudinal length scales, Ed has a new expression, 

Ed = (d,/&)* = T,/T,. 

Therefore, the dimensionless parameter Ed has proven to be 
an effective scale in signifying a frozen concentration field, 
as compared with a velocity field, or vice versa. 

CONCLUSIONS 

Dimensionless effective diffusivity, the representative 
quantity for enhancement of axial dispersion in a laminar 
oscillating flow, is evaluated by the dimensionless frequency, 
the dimensionless amplitude and the Schmidt number for the 
case of a uniform rectangular duct in this study. The results 
in a rectangular duct share the same physics as those in a 
circular tube. 

Based on a characteristic time scale analysis, the new pro- 
per parameters E) and E,, are introduced for bridging the 
discrepancies between mathematical results and physical 
understanding. Specifically, the augmentation of axial dis- 
persion vanishes for both very high and very low values of 
E, with constant a,. These results mean that the axial diffusion 
time should be taken into account in addition to the radial 
diffusion time and the oscillation period for physical under- 
standing of these phenomena. Hence, Ed and Ed are shown to 
be more effective parameters than others. 

In view of the characteristic time scales related to the new 
parameters, it may be concluded that one of the underlying 
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principles governing these phenomena is the radial molecular 
diffusion due to the axial convective transport of the frozen 
concentration field. 
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APPENDIX 

(1) Coefficients a,,,“, b,,, c,, and d,, in equations (11) and 
( 12) are defined as : 

b,, = -4 
(a;+c,x.2)C,a; 

(7r~+c,rr.Z)2+c:a~ 
B mn 

where 

2m-1 (- l)m+” 
n =-A /I”.=7 m 2 m ” 

(‘3 = czoG(; H, = ms Il,. = Il:+r,lXi 

E WG 

rSmn = (7I; -n:)(n: -rI:, 
(- l)r+s+m+“. 

The variable r,, is given by 

r,,=4 form#O and n#O 

r,,=2 form#O and n=O 

form=0 and n#O 
f,,=l form=0 and n=O. 

(2) Definition of tidal volume V in equation (13) : 


